
Vision HDL Toolbox™

Getting Started Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Getting Started Guide
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Vision HDL Toolbox Getting Started
1

Vision HDL Toolbox Product Description 1-2
Key Features . 1-2

Design Video Processing Algorithms for HDL in Simulink . 1-3
Open Model Template . 1-3
Import Data . 1-5
Serialize Data . 1-5
Design HDL-Compatible Model . 1-6
Design Behavioral Model . 1-8
Deserialize Filtered Pixel Stream . 1-8
Display Results and Compare to Behavioral Model 1-8
Generate HDL Code . 1-9

Design Video Processing Algorithms for HDL in MATLAB . 1-10
Import Data . 1-11
Serialize Data . 1-12
Design HDL-Compatible Model . 1-13
Deserialize Filtered Pixel Stream . 1-15
Display Results . 1-15
Compare to Behavioral Model . 1-16
HDL Code Generation . 1-16

Configure the Simulink Environment for HDL Video
Processing . 1-17

About Simulink Model Templates . 1-17
Create Model Using Vision HDL Toolbox Model Template . . 1-17
Vision HDL Toolbox Model Template 1-18

1

Vision HDL Toolbox Getting Started

• “Vision HDL Toolbox Product Description” on page 1-2
• “Design Video Processing Algorithms for HDL in Simulink” on page 1-3
• “Design Video Processing Algorithms for HDL in MATLAB” on page 1-10
• “Configure the Simulink Environment for HDL Video Processing” on page 1-17

1 Vision HDL Toolbox Getting Started

1-2

Vision HDL Toolbox Product Description
Design image processing, video, and computer vision systems for FPGAs and ASICs

Vision HDL Toolbox provides pixel-streaming algorithms for the design and
implementation of vision systems on FPGAs and ASICs. It provides a design framework
that supports a diverse set of interface types, frame sizes, and frame rates, including
high-definition (1080p) video. The image processing, video, and computer vision
algorithms in the toolbox use an architecture appropriate for HDL implementations.

The toolbox algorithms are designed to generate readable, synthesizable code in VHDL
and Verilog (with HDL Coder™). The generated HDL code can process 1080p60 in real
time.

Toolbox capabilities are available as MATLAB® System objects and Simulink® blocks.

Key Features

• Video synchronization signal controls for handling nonideal timing and resolution
variations

• Configurable frame rates and sizes, including 60FPS for high-definition (1080p) video
• Frame-to-pixel and pixel-to-frame conversions to integrate with frame-based

processing capabilities in MATLAB and Simulink
• Image processing, video, and computer vision algorithms with a pixel-streaming

architecture, including image enhancement, filtering, morphology, and statistics
• Implicit onchip data handling using line memory
• Support for HDL code generation and real-time verification

 Design Video Processing Algorithms for HDL in Simulink

1-3

Design Video Processing Algorithms for HDL in Simulink
This tutorial shows how to design a hardware-targeted image filter using Vision HDL
Toolbox blocks. It also uses Computer Vision System Toolbox™ blocks.

The key features of a model for hardware-targeted video processing in Simulink are:

• Streaming pixel interface

Blocks in Vision HDL Toolbox use a streaming pixel interface. Serial processing is
efficient for hardware designs, because less memory is required to store pixel data
for computation. The serial interface allows the block to operate independently of
image size and format and makes the design more resilient to video timing errors. For
further information, see “Streaming Pixel Interface”.

• Subsystem targeted for HDL code generation

Design a hardware-friendly pixel-streaming video processing model by selecting
blocks from the Vision HDL Toolbox libraries. The part of the design targeted for HDL
code generation must be in a separate subsystem.

• Conversion to full-frame video

For verification, you can display full-frame video or compare the result of your
hardware-compatible design with the output of a Simulink behavioral model. Vision
HDL Toolbox provides a block that allows you to deserialize the output of your design.

In this section...

“Open Model Template” on page 1-3
“Import Data” on page 1-5
“Serialize Data” on page 1-5
“Design HDL-Compatible Model” on page 1-6
“Design Behavioral Model” on page 1-8
“Deserialize Filtered Pixel Stream” on page 1-8
“Display Results and Compare to Behavioral Model” on page 1-8
“Generate HDL Code” on page 1-9

Open Model Template

This tutorial uses a Simulink model template to get started.

1 Vision HDL Toolbox Getting Started

1-4

1
Open the Simulink Library Browser by clicking the Simulink Library button , or
by typing simulink at the MATLAB command prompt.

2
Click the New Model arrow and select From Template.

3 In the Simulink Template Gallery, under Vision HDL Toolbox, double-click the
Basic Model template.

The template creates a new model that you can customize. Save the model with a new
name.

 Design Video Processing Algorithms for HDL in Simulink

1-5

Import Data

The template includes a Video Source block that contains a 240p video sample. Each
pixel is a scalar uint8 value representing intensity. A best practice is to design and
debug your design using a small frame size for quick debug cycles, before scaling up to
larger image sizes. You can use this 240p source to debug a design targeted for 1080p
video.

Serialize Data

The Frame To Pixels block converts framed video to a stream of pixels and control
structures. This block provides input for a subsystem targeted for HDL code generation,
but it does not itself support HDL code generation.

The template includes an instance of this block. To simulate with a standard video
format, choose a predefined video padding format to match your input source. To
simulate with a custom-size image, choose the dimensions of the inactive regions that
you want to surround the image with. This tutorial uses a standard video format.

Open the Frame To Pixels block dialog box to view the settings. The source video is in
240p grayscale format. A scalar integer represents the intensity value of each pixel. To
match the input video, set Number of components to 1, and the Video format to
240p.

1 Vision HDL Toolbox Getting Started

1-6

Design HDL-Compatible Model

Design a subsystem targeted for HDL code generation, by modifying the HDL Algorithm
subsystem. The subsystem input and output ports use the streaming pixel format
described in the previous section. Open the HDL Algorithm subsystem to edit it.

 Design Video Processing Algorithms for HDL in Simulink

1-7

In the Simulink Library Browser, click Vision HDL Toolbox. You can also open this
library by typing visionhdllib at the MATLAB command prompt.

Select an image processing block. This example uses the Image Filter block from the
Filtering sublibrary. You can also access this library by typing visionhdlfilter
at the MATLAB command prompt. Add the Image Filter block to the HDL Algorithm
subsystem and connect the ports.

Open Image Filter block and make the following changes:

• Set Filter coefficients to ones(4,4)/16 to implement a 4×4 blur operation.
• Set Padding method to Symmetric.

1 Vision HDL Toolbox Getting Started

1-8

• Set Line buffer size to a power of 2 that accommodates the active line size of the
largest required frame format. This parameter does not affect simulation speed, so
it does not need to be reduced when simulating with a small test image. The default,
2048, accommodates 1080p video format.

• On the Data Types tab, under Data Type, set Coefficients to fixdt(0,1,4).

Design Behavioral Model

You can visually or mathematically compare your HDL-targeted design with a behavioral
model to verify the hardware design and monitor quantization error. The template
includes a Behavioral Model subsystem with full-frame input and output ports for this
purpose. Double-click on the Behavioral Model to edit it.

For this tutorial, add the 2-D FIR Filter block from Computer Vision System Toolbox.
This block filters the entire frame at once.

Open the 2-D FIR Filter block and make the following changes to match the
configuration of the Image Filter block from Vision HDL Toolbox:

• Set Coefficients to ones(4,4)/16 to implement a 4×4 blur operation.
• Set Padding options to Symmetric.
• On the Data Types tab, under Data Type, set Coefficients to fixdt(0,2,4).

Deserialize Filtered Pixel Stream

Use the Pixels To Frame block included in the template to deserialize the data for
display.

Open the Pixels To Frame block. Set the image dimension properties to match the input
video and the settings you specified in the Frame To Pixels block. For this tutorial, the
Number of components is set to 1 and the Video format is set to 240p. The block
converts the stream of output pixels and control signals back to a matrix representing a
frame.

Display Results and Compare to Behavioral Model

Use the Video Viewer blocks included in the template to compare the output frames
visually. The validOut signal of the Pixels To Frame block is connected to the Enable
port of the viewer. Run the model to display the results.

 Design Video Processing Algorithms for HDL in Simulink

1-9

Generate HDL Code

Once your design is working in simulation, you can use HDL Coder to generate HDL code
for the HDL Algorithm subsystem. See “Generate HDL Code From Simulink”.

Related Examples
• “Gamma Correction”

More About
• “Configure the Simulink Environment for HDL Video Processing”

1 Vision HDL Toolbox Getting Started

1-10

Design Video Processing Algorithms for HDL in MATLAB

This tutorial shows how to design a hardware-targeted image filter using Vision HDL
Toolbox objects.

The key features of a model for hardware-targeted video processing in MATLAB are:

• Streaming pixel interface

System objects in Vision HDL Toolbox use a streaming pixel interface. Serial
processing is efficient for hardware designs, because less memory is required to store
pixel data. The serial interface enables the object to operate independently of image
size and format and makes the design more resilient to video timing errors. For
further information, see “Streaming Pixel Interface”.

• Function targeted for HDL code generation

Once the data is converted to a pixel stream, you can design a hardware model by
selecting System objects from the Vision HDL Toolbox libraries. The part of the
design targeted for HDL code generation must be in a separate function.

• Conversion to full-frame video

For verification, you can display full-frame video, or you can compare the result of
your hardware-compatible design with the output of a MATLAB full-frame behavioral
model. Vision HDL Toolbox provides a System object™ that enables you to deserialize
the output of your design.

In this section...

“Import Data” on page 1-11
“Serialize Data” on page 1-12
“Design HDL-Compatible Model” on page 1-13
“Deserialize Filtered Pixel Stream” on page 1-15
“Display Results” on page 1-15
“Compare to Behavioral Model” on page 1-16
“HDL Code Generation” on page 1-16

 Design Video Processing Algorithms for HDL in MATLAB

1-11

Import Data

Read an image file into the workspace. This sample image contains 256×256 pixels. Each
pixel is a single uint8 value representing intensity. To reduce simulation speed while
testing, select a thumbnail portion of the image.

origIm = imread('rice.png');

origImSize = size(origIm)

imActivePixels = 64;

imActiveLines = 48;

inputIm = origIm(1:imActiveLines,1:imActivePixels);

figure

imshow(inputIm,'InitialMagnification',300)

title 'Input Image'

origImSize =

 256 256

Simulating serial video in the MATLAB interpreted language can be time-consuming.
Once you have debugged the design with a small image size, use MEX code generation to

1 Vision HDL Toolbox Getting Started

1-12

accelerate testing with larger images. See “Accelerate a MATLAB Design With MATLAB
Coder”.

Serialize Data

The visionhdl.FrameToPixels System object converts framed video to a pixel stream
and control structure. This object provides input for a function targeted for HDL code
generation, but it does not itself support HDL code generation.

To simulate with a standard video format, choose a predefined video padding format to
match your input source. To simulate with a custom-sized image, choose dimensions of
inactive regions to surround the image. This tutorial uses a custom image. The properties
of the visionhdl.FrameToPixels object correspond to the dimensions in the diagram.

Create a visionhdl.FrameToPixels object and set the image properties. The
image is an intensity image with a scalar value representing each pixel, therefore set

 Design Video Processing Algorithms for HDL in MATLAB

1-13

NumComponents property to 1. This tutorial pads the thumbnail image with 5 inactive
lines above and below, and 10 inactive pixels on the front and back of each line.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',imActivePixels,...

 'ActiveVideoLines',imActiveLines,...

 'TotalPixelsPerLine',imActivePixels+20,...

 'TotalVideoLines',imActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',10);

Use the getparamfromfrm2pix function to get useful image dimensions from the
serializer object. This syntax discards the first two returned values, and keeps only the
total number of pixels in the padded frame.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

Use the step method to convert the image into a vector of pixels and a vector of control
signals.

[pixel,ctrl] = step(frm2pix,inputIm);

Preallocate the output vectors for a more efficient simulation.

pixelOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

Design HDL-Compatible Model

Select an image processing object from the visionhdl library. This tutorial uses
visionhdl.ImageFilter.

Construct a function containing a persistent instance of this object. The function
processes a single pixel by executing one call to the step method of the object.

The ctrlIn and ctrlOut arguments of the step method are structures that contain
five control signals. The signals indicate the validity of each pixel and the location of
each pixel in the frame. To generate HDL code from this function, you must flatten
the input and output arguments to their five component signals rather than using a

1 Vision HDL Toolbox Getting Started

1-14

structure. The pixelcontrolsignals function extracts signals from the structure. The
pixelcontrolstruct function creates a structure from the signals.

Set the filter coefficients of the visionhdl.ImageFilter to perform a 2×2 blur
operation.

For this tutorial, you do not need to change the LineBufferSize property of the filter
object. This parameter does not affect simulation speed, so it does not need to be modified
when simulating with a small test image. When choosing LineBufferSize, select a
power of 2 that accommodates the active line size of the largest required frame format.
The default value, 2048, accommodates 1080p video format.

function [yOut,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...

 HDLTargetedDesign(yIn,hStartIn,hEndIn,vStartIn,vEndIn,validIn)

%HDLTARGETEDDESIGN

% Implement video processing algorithms using pixel-stream System objects

% from Vision HDL Toolbox

%

 persistent filt2d;

 if isempty(filt2d)

 filt2d = visionhdl.ImageFilter(...

 'Coefficients',ones(2,2)/4,...

 'CoefficientsDataType','Custom',...

 'CustomCoefficientsDataType',numerictype(0,1,2),...

 'PaddingMethod','Symmetric');

 end

 ctrlIn = pixelcontrolstruct(hStartIn,hEndIn,vStartIn,vEndIn,validIn);

 [yOut,ctrlOut] = step(filt2d,yIn,ctrlIn);

 [hStartOut,hEndOut,vStartOut,vEndOut,validOut] = pixelcontrolsignals(ctrlOut);

end

Call the new function once for each pixel in the padded frame, which is represented by
the pixels vector.

 for p = 1:numPixelsPerFrame

 [hStartIn,hEndIn,vStartIn,vEndIn,validIn] = pixelcontrolsignals(ctrl(p));

 [pixelOut(p),hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...

 HDLTargetedDesign(pixel(p),hStartIn,hEndIn,vStartIn,vEndIn,validIn);

 ctrlOut(p) = pixelcontrolstruct(hStartOut,hEndOut,vStartOut,vEndOut,validOut);

 end

 Design Video Processing Algorithms for HDL in MATLAB

1-15

Deserialize Filtered Pixel Stream

The visionhdl.PixelsToFrame System object converts a pixel stream to full-frame
video. Use this object to deserialize the filtered data from visionhdl.ImageFilter. Set
the image dimension properties to match the test image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',imActivePixels,...

 'ActiveVideoLines',imActiveLines);

Call the step method to convert the output of the HDL-targeted function to a matrix.

[outputIm,validIm] = step(pix2frm,pixelOut,ctrlOut);

Display Results

Use the imshow function to display the result of the operation.

if validIm

 figure

 imshow(outputIm,'InitialMagnification',300)

 title 'Output Image'

end

1 Vision HDL Toolbox Getting Started

1-16

Compare to Behavioral Model

If you have a behavioral model of the design, you can compare the output frames visually
or mathematically. For filtering, you can compare visionhdl.ImageFilter with the
vision.ImageFilter System object in Computer Vision System Toolbox, or with the
imfilter function in Image Processing Toolbox™. The vision.ImageFilter object
and the imfilter function operate on the frame as a matrix and return a modified
frame as a matrix. You can compare this matrix with the matrix output of the pix2frm
object.

To avoid dependency on the Computer Vision System Toolbox, or Image Processing
Toolbox licenses, this tutorial does not perform a compare.

HDL Code Generation

Once your design is working in simulation, use HDL Coder to generate HDL code for the
HDLTargetedDesign function. See “Generate HDL Code From MATLAB”.

Related Examples
• Pixel-Streaming Design in MATLAB
• “Accelerate a MATLAB Design With MATLAB Coder”

 Configure the Simulink Environment for HDL Video Processing

1-17

Configure the Simulink Environment for HDL Video Processing

In this section...

“About Simulink Model Templates” on page 1-17
“Create Model Using Vision HDL Toolbox Model Template” on page 1-17
“Vision HDL Toolbox Model Template” on page 1-18

About Simulink Model Templates

Simulink model templates provide common configuration settings and best practices for
new models. Instead of the default canvas of a new model, select a template model to help
you get started.

For more information on Simulink model templates, see “Create a New Model” in the
Simulink documentation.

Create Model Using Vision HDL Toolbox Model Template

To use the Vision HDL Toolbox model template:

1
Open the Simulink Library Browser by clicking the Simulink Library button , or
by typing simulink at the MATLAB command prompt.

2
Click the New Model arrow and select From Template.

3 In the Simulink Template Gallery, under Vision HDL Toolbox, double-click the
Basic Model template.

1 Vision HDL Toolbox Getting Started

1-18

A new model, with the template contents and settings, opens in the Simulink Editor.
Click File > Save as to save the model.

Vision HDL Toolbox Model Template

Basic Model Template

The Vision HDL Toolbox Basic Model template includes the following features:

• Blocks to convert framed video data to a pixel stream, and to convert the output pixel
stream back to full-frame video

 Configure the Simulink Environment for HDL Video Processing

1-19

• An empty behavioral model subsystem
• An empty HDL-targeted subsystem
• Display blocks to compare the results of the two subsystems

This template also configures the model for HDL code generation.

This template uses the Video Source and Video Viewer blocks from Computer Vision
System Toolbox.

Due to serial processing, Vision HDL Toolbox simulation can be time-consuming for
large images. You can work around this limitation by designing and debugging with a

1 Vision HDL Toolbox Getting Started

1-20

small image, and then increasing the size before final testing and HDL code generation.
The pixel stream control signals allow most blocks, except for those for frame and pixel
conversion, to be independent of image size. To change image size, modify the Frame
To Pixels and Pixels To Frame block parameters only. To simplify a size change, use
variables for custom-size image dimensions. This template uses the standard 240p
format and also provides image dimension variables in the callback function, InitFcn.
To view or edit this function, click File > Model Properties > Model Properties, select
the Callbacks tab, and then click InitFcn*.

This template includes the following features that assist with HDL code generation:

• Configures Solver settings equivalent to calling hdlsetup
• Displays data rates and data types in the Model Editor
• Creates an instance of pixelcontrolbus in the workspace (in InitFcn)
• Enables fileIO mode when generating an HDL test bench

Related Examples
• “Design Video Processing Algorithms for HDL in Simulink”

